Programmer avec ou sans robot

Denise St-Pierre, le 24 août 2018

Source des images: http://pixabay.com

Contenu de la journée

AM

C'est quoi, programmer? Ça sert à quoi, programmer? Quelques bases

Atelier 1 : Scratch

Atelier 2: Makey Makey

PM

Atelier 3: Micro:bit

Atelier 4: Wedo 2

Atelier 5: EV3

Source des images: http://pixabay.com

Coder ou Programmer?

Commençons par démêler

les concepts de code, de codage et de programmation. Tout d'abord, le code est un ensemble d'instructions écrites en langage informatique. Certains médias utilisent le terme codage pour décrire le fait d'écrire du code. Par le code, on peut écrire des algorithmes, des suites d'opérations ou d'instructions permettant de résoudre un problème ou d'obtenir un résultat. Mais, la programmation va au-delà de l'écriture d'instructions en langage informatique car, avant d'écrire du code, il faut analyser une situation et après s'engager dans une démarche de conception. Ensuite, il faut faire le choix des systèmes et langages informatiques pour créer un programme. La programmation est donc une activité réflexive, car il faut analyser une situation-problème afin de s'engager dans une démarche de conception et de création.

Source: Usages créatifs du numérique. 2017. Romero & all.

Le code c'est...

un langage pour parler aux robots et aux objets numériques

Introduction à la <mark>programmation</mark>

Après l'analyse d'un besoin ou d'un problème, la **programmation** vise à modéliser et à développer une solution par le biais d'un programme informatique.

La programmation s'exprime par le **code**, qui est un ensemble d'instructions écrites en langage informatique.

nuand 🦰 cliqué

dire Bonjour, je suis Scratch!

La programmation nous permet de donner des **instructions** à des appareils numériques programmables comme les ordinateurs ou les robots.

Il existe différents types de langages informatiques. Malgré leurs différences, leurs structures logiques sont assez similaires.

Source: Guide d'activités technocréatives pour enfants du 21e siècle. 2016. M.Romero V.Vallerand Le télécharger au complet: <u>https://drive.google.com/file/d/0B4bacfIEaahjSDIUV0FfUHYtTEE/view</u>

Programmer

pour...

développer des compétences du XXIe siècle

... mais à quoi ça sert d'apprendre à programmer ?

L'apprentissage de la programmation développe les **stratégies cognitives et métacognitives** liées à la **pensée informatique** dont: l'abstraction, l'algorithmique, l'identification, la décomposition et l'organisation de structures complexes et de suites logiques. La pensée informatique est en lien avec tous les **systèmes symboliques** permettant la modélisation de connaissances comme les mathématiques, les langues, les sciences et les technologies.

Source: Guide d'activités technocréatives pour enfants du 21e siècle. 2016. M.Romero V.Vallerand

Voir orientation 2.2

Pensée critique / Créativité / Collaboration / Résolution de problèmes / Pensée informatique

Compétences pour le 21e siècle

Cinq compétences clés pour le 21e siècle ont été sélectionnées dans le cadre du projet #CoCreaTIC. La **pensée critique**, la **collaboration**, la **résolution de problèmes** et la **créativité** correspondent à des compétences transversales du programme de formation de l'école québécoise (PFÉQ) et du référentiel de l'OCDE (2016); nous y avons ajouté la compétence de **pensée informatique**.

2016. M.Romero V.Vallerand siècle. 21e du enfants pour d'activités technocréatives Guide Source:

LES TROIS AXES, LES ENJEUX ET LES ORIENTATIONS DE LA POLITIQUE

	ENJEU 1 DES INTERVENTIONS PRÉCOCES, RAPIDES ET CONTINUES	Orientation 1.1 Agir tôt et rapidement	
AXE 1 L'ATTEINTE DU PLEIN POTENTIEL DE TOUTES ET DE TOUS		Orientation 1.2 Agir de façon continue et concertée	
	ENJEU 2 DES FONDATIONS ET DES PARCOURS POUR APPRENDRE TOUT AU LONG DE LA VIE	Orientation 2.1 Développer les compétences en littératie et en numératie dès la petite enfance et tout au long de la vie	
		Orientation 2.2 Mieux intégrer les compétences du 21° siècle et les possibilités du numérique	
		Orientation 2.3 Élaborer des parcours de formation professionnelle diversifiés, axés sur les priorités de développement du Québec et les intérêts des personnes	
	ENJEU 3 UNE ADAPTATION À LA DIVERSITÉ DES PERSONNES, DES BESOINS ET DES TRAJECTOIRES	Orientation 3.1 Reconnaître la diversité des personnes et valoriser l'apport de chacun	
		Orientation 3.2 Déployer des services éducatifs qui soient accessibles, de qualité et adaptés à la diversité des besoins	
		Orientation 3.3 Intervenir à tous les niveaux de gouvernance pour assurer l'égalité des chances	

Programmer

Quelques bases

• Actions possibles

• Actions possibles

Allumer ou éteindre une lumière

Programmer

Quelques bases

Actions possiblesDéclencheurs d'actions

1^{er} atelier: Scratch

 Présentation
 Possibilités multimédias
 Regarder des exemples, voir à l'intérieur
 Défi guidé
 Défi autonome

https://giphy.com/stickers/500th-post-k7k6EUnRnf8Z2

Chaque objet (lutin ou arrière-plan) Doit être sélectionné (voir contour en bleu) Pour voir ses onglets (ses scripts, ses costumes, ses sons)

Possibilités multimédias

Mouvement	Événements	Mouvement	Èvénements	Mouvement
Apparence	Contrôle	Apparence	Contrôle	Apparence
Sons	Capteurs	Sons	Capteurs	Sons
Stylo	Opérateurs	Stylo	Opérateurs	Stylo
Données	Ajouter blocs	Données	Ajouter blocs	Données
avancer de 10		dire Hellol pend	ant 2 secondes	Gauge La can
	E dante		ant 2 secondes	jouer le son
tourner (v de (10 degres	dire Hello!		jouer le son
tourner 🏲) de (15) degrés	penser à Hmm.	pendant (2) secon	arrêter tous
s'orienter à 90	7	penser à Hmm]	jouer du tan
		montrer		faire une pa
s orienter vers	pointeur de souris	cacher		
aller à x: 99 y	103			jouer la not
aller à pointeur d	le souris	basculer sur le	costume costume2	choisir l'inst
	reader à vi ᅇ vi	costume suivan		ajouter -10
glisser en T se	condes a x: 99 y:	basculer sur l'a	rrière-plan xy-grid	
ajouter 10 à x		ajouter à l'effet	couleur v 25	volume
donner la valeu	ır () à x	mettre l'effet o	ouleur 🔻 à 🕕	
ajouter 10 à y		annuler les effe	ts graphiques	ajouter 20 a
donner la valeu	r O à v			mettre le te
		ajouter 10 à la	taille	tempo
rebondir si le b	oord est atteint	mettre à 100 9	6 de la taille initia	
		aller au premie	r plan	
fixer le sens de	e rotation position à	déplacer de 1	plans arrière	
abscisse x		Costument		
ordonnée y		nom de l'ar	rière-plan	
direction		taille		

.

jouer le son meow 🔻

arrêter tous les sons

Possibilités multimédias

Concepts logiques

Concept	Explication	Exemple
Séquence	Pour créer un programme avec Scratch, vous devez systématiquement penser à l'ordre des instructions .	quand espace v est cliqué aller à x: 0 y: 0 glisser en 3 secondes à x: 100 y: 0 dire Bonjour! pendant 2 secondes jouer le son meow v jusqu'au bout
Itérations (boucles)	<i>Répéter indéfiniment</i> et <i>répéter</i> peuvent être utilisés pour une itération (répétitions d'une série d'instructions)	répéter 10 fois jouer du tambour 17 pendant 0.25 tem avancer de 10 tourner 17 de 15 degrés
Instructions conditionnelles	<i>Si</i> et <i>Si – Sinon</i> permettent d'engager une action selon qu'une condition est réalisée ou non.	si souris x = 200 alors donner la valeur 200 à x attendre 1 secondes sinon aller à x: 0 y: 0

https://scratch.mit.edu/projects/239833924

https://scratch.mit.edu/projects/2272641

https://scratch.mit.edu/projects/131737462

Padlet Stéphanie Rioux: https://padlet.com/rioux_stephanie/scratch

Pratique guidée

https://scratch.mit.edu/projects/11932160 Déboguer un dialogue entre pingouin

https://scratch.mit.edu/projects/239878253/

https://scratch.mit.edu/projects/44259990

https://scratch.mit.edu/projects/239876273 Mon remix

2e atelier - MakeyMakey

 Présentation
 Regarder des exemples, voir à l'intérieur

Défi autonome

Vidéo de présentation

Présentation de l'outil: <u>https://youtu.be/WePAA8TBXDs</u>

 Exemples créés par les élèves de M.Bertin Desjardins de l'école N-D de St-Elzéar

https://youtu.be/9PGfgmZqUGo

https://scratch.mit.edu/projects/57425646

https://scratch.mit.edu/projects/239150190

https://scratch.mit.edu/projects/239158593/

Tester l'affiche interactive

Faites vos essais

- À l'aide du matériel proposé et tout autre objet disponible, construisez un montage avec le MakeyMakey
- Vous le programmerez avec Scratch
- Pour permettre à une autre équipe de faire sa construction,
- Il faudra libérer le MakeyMakey à la fin de l'atelier, garder des traces en filmant votre projet en action, il faudrait voir la programmation sur votre vidéo aussi.

3e atelier: Micro:bit

 Présentation
 Regarder des exemples, voir à l'intérieur

Défi autonome

Vidéo de présentation

Le matériel

https://youtu.be/mmEDm61JvlU

Le logiciel de programmation

https://youtu.be/9eoxmrX6O3s

Surveiller l'évolution de Scratch 3 avec le Microbit

-

Ajouter une extension

SHAKE SHAKE SHAKE O O O O O O O O O

Exemples

Programmer boutons A , B et secouer https://makecode.microbit.org/_bz2VtHX2yFKi

Faire défiler votre prénom <u>https://makecode.microbit.org/_6tjXsq0Ha4sr</u>

l à 10? https://makecode.microbit.org/_eTYRH16oL2Dh

Faites vos essais

Application de programmation En ligne: <u>https://makecode.microbit.org/#</u>

https://makecode.microbit.org/projects

4e atelier: Wedo 2

Présentation du matériel et du logiciel
Projet découverte
Projet guidé

Matériel

Le matériel

https://youtu.be/KaRZg1fPIH8

Logiciel

https://youtu.be/VqYCghI5B0k (lre partie)

education

LEGO

https://youtu.be/XzxYLQjMeaQ (2e partie)

Construction et programmation

projet découverte

- Si vous êtes rapide à assembler un modèle, faites une construction choisie parmi les défis guidés et expérimentez la programmation proposée.
- Si vous préférez passer plus de temps à essayer des capteurs et à construire des modèles simples, utilisez les projets-découvertes.

5e atelier: EV3

Présentation du matériel et du logiciel

Défi sans capteurDéfi avec capteur

Matériel

Le matériel

https://youtu.be/EzX44vp_u0k

Logiciel

- Le logiciel, version mobile sur iPad
- <u>https://youtu.be/jrXzGS4YsO4</u> (lre partie)
- <u>https://youtu.be/CHOY82lD_lc</u> (2e partie)

Programmation robot sans capteur

Parcours d'un mètre carré

Voir le résultat: <u>https://youtu.be/tP6RdPr3oV0</u>

Ces documents ont été élaborés par un comité d'enseignants de la commission scolaire de Saint-Hyacinthe composé de Mmes Alexandra Lussier et Mireille Bruneau sous la responsabilité de M. Claude Elmoznino, conseiller pédagogique. Source des images: LEGO Mindtom éducation et Pixabay. Adaptation et ajout de tutorels EV3 par Denise SL-Pierre de la commission scolaire de la Beauce-Etchemin. Ce document est destiné aux élèves qui débutent en robotique. Le but est uniquement d'apprendre à utiliser le matériel et à apprendre à le programmer. Le plaisir et l'impact pédagogique réel débutent quand on relève des défis complexes!

0000

Programmation

robot avec capteur de distance

Parcours incluant l'évitement d'un obstacle

0000